真 nm 自闭(呲牙。
A Maxim and Biology B Dima and a Bad XOR 给定一个 $n \times m$ 的矩阵,每一行选一个,构造一种异或和不为 $0$ 的情况。
枚举每个二进制位,统计有多少个位置必选 $1$,其他位置可选 $1$ 的,选上使得 $1$ 的总数为奇数。
C Problem for Nazar D Stas and the Queue at the Buffet 给定 $n$ 对数 $(a_i,b_i)$,为这些数字重新安排位置,假设 $i$ 在位置 $j$ 上,他的权值是 $(j-1)\cdot a_i + (n-j) \cdot a_i$,求最小权值和。
先假设所有每个位置都选上了 $a_i$,只要在选 $b_i$ 时把 $a_i$ 的影响消除即可。
注意到越小的数系数应该越小,对 $b_i-a_i$ 排序,乘上贡献即可。
E Number of Components 给定 $n$ 个在 $[1,n]$ 范围内的数,记 $f(l,r)$ 表示,选出所有范围在 $[l,r]$ 内的数,剩下的数组成了多少条线段。求 $\sum_{l=1}^n \sum_{r=l}^n f(l,r)$。
考虑每个点作为一个线段左端点的贡献。
如果 $a_i \ge a_{i-1}$,那么左端点的范围是 $[a_{i-1}+1,a_i]$,右端点的范围是 $[a_i,n]$,否则类似的计算贡献。
给定一个 $01$ 序列,做 $k$ 次操作,每次等概率选一对数交换,求最后排成不减序列的概率。
显然,顺序不影响,只要前面都是 $0$,后面都是 $1$ 即可,设有 $m$ 个 $0$,考虑 $dp[i]$ 表示前面 $m$ 个有 $i$ 个 $0$。
于是有转移方程
$$ dp[i] = dp[i] \cdot ({m \choose 2} + {n-m \choose 2}+(m-i) \cdot (n-2m+2i)) / {n \choose 2} \
dp[i-1] \cdot (m-i+1)^2 / {n \choose 2} \
dp[i+1] \cdot (i+1)(n-2m+i+1) / {n \choose 2} $$
状态数只有 $100$,转移次数很大,注意到转移矩阵是固定的,矩阵快速幂即可。
代码 A 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 #include <iostream> #include <cstdio> #include <cstring> #include <cmath> #include <algorithm> #include <vector> #include <utility> #ifdef XLor #define dbg(args...) do {cout << #args << " -> "; err(args);} while (0) #else #define dbg(...) #endif void err() {std::cout << std::endl;} template<typename T, typename...Args> void err(T a, Args...args){std::cout << a << ' '; err(args...);} #define ms(a,b) memset(a,b,sizeof(a)) using namespace std; typedef long long ll; typedef pair<int,int> PII; const int mod = 998244353; const int inf = 1 << 30; const int maxn = 100000 + 5; int n; char s[maxn]; int main() { cin >> n >> s; int ans = 1e9; for (int i = 0; i + 3 < n ; i++) { int x1 = min(min(abs(s[i] - 'A'), abs(26 + 'A' - s[i])), abs(26 + s[i] - 'A')); int x2 = min(min(abs(s[i + 1] - 'C'), abs(26 + 'C' - s[i + 1])), abs(26 + s[i + 1] - 'C')); int y1 = min(min(abs(s[i + 2] - 'T'), abs(26 + 'T' - s[i + 2])), abs(26 + s[i + 2] - 'T')); int y2 = min(min(abs(s[i + 3] - 'G'), abs(26 + 'G' - s[i + 3])), abs(26 + s[i + 3] - 'G')); dbg(x1, x2, y1, y2, abs('A' + 26 - s[i])); ans = min(ans, x1 + x2 + y1 + y2); } cout << ans; return 0; }
B 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 #include <iostream> #include <cstdio> #include <cstring> #include <cmath> #include <algorithm> #include <vector> #include <utility> #ifdef XLor #define dbg(args...) do {cout << #args << " -> "; err(args);} while (0) #else #define dbg(...) #endif void err() {std::cout << std::endl;} template<typename T, typename...Args> void err(T a, Args...args){std::cout << a << ' '; err(args...);} #define ms(a,b) memset(a,b,sizeof(a)) using namespace std; typedef long long ll; typedef pair<int,int> PII; const int mod = 998244353; const int inf = 1 << 30; const int maxn = 500 + 5; int n, m, a[maxn][maxn], c[maxn][2], p[maxn][2]; int main() { cin >> n >> m; for (int i = 1; i <= n; i++) for (int j = 1; j <= m; j++) cin >> a[i][j]; for (int t = 0; t <= 10; t++) { int x = 0, y = 0, z = 0; vector<int> ans(n + 1, 0); ms(c, 0); ms(p, 0); for (int i = 1; i <= n; i++) { for (int j = 1; j <= m; j++) { // dbg(t, a[i][j] >> t & 1); c[i][a[i][j] >> t & 1]++; p[i][a[i][j] >> t & 1] = j; } if (c[i][1] && !c[i][0]) x++, ans[i] = p[i][1]; } for (int i = 1; i <= n; i++) { if (ans[i]) continue; if (c[i][1] && (x % 2 == 0)) { ans[i] = p[i][1]; x++; } else ans[i] = p[i][0]; dbg(c[i][1]); } if (x % 2 == 1) { dbg(t, x); puts(" TAK"); for (int i = 1; i <= n; i++) printf(" %d ", ans[i]); return 0; } } puts(" NIE"); return 0; }
C 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 #include <iostream> #include <cstdio> #include <cstring> #include <cmath> #include <algorithm> #include <vector> #include <utility> #define ms(a,b) memset(a,b,sizeof(a)) using namespace std;typedef long long ll;typedef pair<int ,int > PII;const int mod = 1e9 + 7 ;const int inf = 1 << 30 ;const int maxn = 100000 + 5 ;void add (ll& x, ll y) { x += y; if (x >= y) x -= mod; } ll cal (ll x) { ll a = 0 , b = 0 , ans = 0 ; for (int i = 0 ; i <= 62 ; i++) { ll tot = 1ll << i; if (x >= tot) { x -= tot; if (i % 2 ) a += tot; else b += tot; } else { if (i % 2 ) a += x; else b += x; break ; } } a %= mod; b %= mod; return (b * b % mod + a * (1 + a) % mod) % mod; } ll l, r; int main () { cin >> l >> r; cout << (cal (r) - cal (l - 1 ) + mod) % mod; return 0 ; }
D 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 #include <iostream> #include <cstdio> #include <cstring> #include <cmath> #include <algorithm> #include <vector> #include <utility> #define ms(a,b) memset(a,b,sizeof(a)) using namespace std;typedef long long ll;typedef pair<int ,int > PII;const int mod = 998244353 ;const int inf = 1 << 30 ;const int maxn = 100000 + 5 ;int n, a[maxn], b[maxn];int main () { scanf ("%d" , &n); ll ans = 0 ; for (int i = 1 ; i <= n; i++) { scanf ("%d%d" , a + i, b + i); ans += 1ll * (n - 1 ) * a[i]; b[i] -= a[i]; } sort (b + 1 , b + 1 + n); reverse (b + 1 , b + 1 + n); for (int i = 1 ; i <= n; i++) { ans += 1ll * (i - 1 ) * b[i]; } cout << ans << endl; return 0 ; }
E 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 #include <iostream> #include <cstdio> #include <cstring> #include <cmath> #include <algorithm> #include <vector> #include <utility> #include <map> #include <set> #define ms(a,b) memset(a,b,sizeof(a)) using namespace std;typedef long long ll;typedef pair<int ,int > PII;const int mod = 998244353 ;const int inf = 1 << 30 ;const int maxn = 100000 + 5 ;int n, a[maxn];int main () { scanf ("%d" , &n); for (int i = 1 ; i <= n; i++) scanf ("%d" , a + i); ll ans = 0 ; for (int i = 1 ; i <= n; i++) { if (a[i] >= a[i - 1 ]) { ans += 1ll * (n - a[i] + 1 ) * (a[i] - a[i - 1 ]); } else { ans += 1ll * a[i] * (a[i - 1 ] - a[i]); } } cout << ans; return 0 ; }
F 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 #include <iostream> #include <cstdio> #include <cstring> #include <cmath> #include <algorithm> #include <vector> #include <utility> #ifdef XLor #define dbg(args...) do {cout << #args << " -> "; err(args);} while (0) #else #define dbg(...) #endif void err() {std::cout << std::endl;} template<typename T, typename...Args> void err(T a, Args...args){std::cout << a << ' '; err(args...);} #define ms(a,b) memset(a,b,sizeof(a)) using namespace std; typedef long long ll; typedef pair<int,int> PII; const int mod = 1e9 + 7; const int inf = 1 << 30; const int maxn = 100 + 5; ll qpow(ll x, ll n) { ll r = 1; while (n > 0) { if (n & 1) r = r * x % mod; n >>= 1; x = x * x % mod; } return r; } ll inv(ll x) { return qpow(x, mod - 2); } void add(ll& x, ll y) { x += y; if (x >= mod) x -= mod; } struct Mat { static const int M = 100 + 5; ll a[M][M]; Mat() { ms(a, 0); } void clear() { ms(a, 0); } void eye() { for (int i = 0; i < M; i++) a[i][i] = 1; } ll* operator [] (ll x) { return a[x]; } const ll* operator [] (ll x) const { return a[x]; } Mat operator * (const Mat& b) { const Mat& a = *this; Mat r; for (int i = 0; i < M; i++) for (int j = 0; j < M; j++) for (int k = 0; k < M; k++) r[i][j] = (r[i][j] + a[i][k] * b[k][j]) % mod; return r; } Mat pow(ll n) const { Mat a = *this, r; r.eye(); while (n > 0) { if (n & 1) r = r * a; n >>= 1; a = a * a; } return r; } Mat operator + (const Mat& b) { const Mat& a = *this; Mat r; for (int i = 0; i < M; i++) for (int j = 0; j < M; j++) r[i][j] = (a[i][j] + b[i][j]) % mod; return r; } void print() const { for (int i = 0; i < M; i++) for (int j = 0; j < M; j++) printf(" %lld%c", (*this)[i][j], j == M - 1 ? '\n' : ' '); } } F, T; int n, k, m, a[maxn]; ll dp[2][maxn]; int main() { scanf(" %d%d", &n, &k); for (int i = 1; i <= n; i++) { scanf(" %d", a + i); if (a[i] == 0) m++; } int c = 0; for (int i = 1; i <= m; i++) if (a[i] == 0) c++; F[c][0] = 1; ll iv = inv(n * (n - 1) / 2), c1 = m * (m - 1) / 2, c2 = (n - m) * (n - m - 1) / 2; for (int i = 0; i <= m; i++) { T[i][i] = 1ll * (c1 + c2 + i * (m - i) + (m - i) * (n - 2 * m + i)) * iv % mod; if (i > 0) { T[i][i - 1] = 1ll * (m - i + 1) * (m - i + 1) * iv % mod; } if (i < m) { T[i][i + 1] = 1ll * (i + 1) * (n - 2 * m + i + 1) * iv % mod; } } cout << (T.pow(k) * F)[m][0] << endl; // dp[0][c] = 1; int f = 0; // for (int t = 1; t <= k; t++, f ^= 1) { // // ms(dp[f ^ 1], 0); // dbg(t); // for (int i = 0; i <= m; i++) { // dp[f ^ 1][i] = dp[f][i] * (c1 + c2 + i * (m - i) + (m - i) * (n - 2 * m + i)) % mod * iv % mod; // if (i > 0) { // add(dp[f ^ 1][i], dp[f][i - 1] * (m - i + 1) * (m - i + 1) % mod * iv % mod); // } // if (i < m) { // add(dp[f ^ 1][i], dp[f][i + 1] * (i + 1) * (n - 2 * m + i + 1) % mod * iv % mod); // } // } // } // cout << dp[f][m] << endl; return 0; }